
2.6 - Limits and Colimits

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Products, pullbacks and difference kernels are all examples of a more general
concept called the limit. To see this, let J be an “elementary” category [such
as a discrete category], and D : J→ C a functor. Then D is called a diagram
of type J in C.

Define a cone to the diagram D to be a natural transformation from a con-
stant functor onto an object L in C [Example 5 of Section 3] to D. Stated
otherwise, it is a pair (L, {ηα}) with L ∈ ob(C), ηα : L→ Dα with α ∈ ob(J),
such that for every f ∈ homJ(α, β) the following diagram is commutative:

Dα
D(f)
> Dβ

L

ηβ

>

ηα

<

Given this data we define

DEFINITION
Let D : J → C be a diagram of type J in C. A limit of D is defined to be

a cone (L, {ηα}) to D such that for every cone (B, {ζα}) to D, there exists a
unique morphism θ : B → L such that ζα = ηαθ for all α.

Again it is routine to show the “uniqueness up to a unique isomorphism”: if
(L, {ηα}) and (L′, {η′α}) are both limits of D, there is a unique isomorphism
L′ → L such that η′α = ηασ for all α. For one, this is an immediate consequence
of limits being universals for suitably defined categories. See Exercise 1.

EXAMPLES
1. If J is a discrete category, then its only morphisms are the identity

morphisms, and the commutativity of the diagram in the definition of a cone
is a tautology. Thus a cone is simply a pair (L, {ηα}) with L ∈ ob(C) and
ηα : L→ Dα. It is easy to see that a limit of D is simply a product of the Dα’s
[Section 4].

2. Let J be the category with only two objects α, β such that the only
morphisms are the identity morphisms and two morphisms α → β. Then a
diagram of type J in C is a pair of objects Aα, Aβ ∈ ob(C) with two morphisms
f1, f2 : Aα → Aβ . A cone is a triple (L, ηα, ηβ) such that ηβ = f1ηα and
ηβ = f2ηα, or is identifiably a pair (L, η) with f1η = f2η. Thus a limit is a
difference kernel [or equalizer] [see Exercise 2 of Section 2]. This can be done
for more than two morphisms as well.
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3. Suppose J has three objects, α, β, γ and two nonidentity morphisms,
α → γ and β → γ. Then a diagram of type J in C is a triple of objects
A1, A2, A ∈ ob(C) with two morphisms f1 : A1 → A, f2 : A2 → A. A cone is
identifiably a pair (L, η1, η2) such that f1η1 = f2η2 and a limit is therefore a
pullback in this case.

One of the things which makes the category V(S) so special is that it contains
all limits. That is, every diagram in V(S) of any type has a limit, as we now
prove. [Such a category is called a complete category.]

THEOREM 2.3 Limits exist in V(S) for any diagram D : J→ V(S).

Proof of Theorem 2.3. Let D : J → V(S) be a diagram. Then define A to be
the following subset of the product

∏
α∈ob(J)Dα:

A = {a ∈
∏

α∈ob(J)

Dα | D(f)(aα) = aβ ∀f ∈ homJ(α, β)}

We claim that A is a subalgebra of the product. Suppose ω ∈ Ω(0), then
(ωΠDα) ∈ A because D(f)(ωDα) = (ωDβ) for all f : α → β. Now suppose
n ≥ 1, ω ∈ Ω(n) and a1, a2, . . . an ∈ A. Then for all f : α→ β,

D(f)((ωa1a2 . . . an)α) = D(f)(ωa1
αa

2
α . . . a

n
α) = (ωD(f)(a1

α)D(f)(a2
α) . . . D(f)(anα))

= (ωa1
βa

2
β . . . a

n
β) = (ωa1a2 . . . an)β

Therefore, (ωa1a2 . . . an) ∈ A, and A is a subalgebra. Now let ηα : A→ Dα be
the restricted projections [that is, pα(a) = aα for a ∈ A]. Then (A, {ηα}) is a
cone to D because the ηα are homomorphisms and for all f : α→ β in J,

ηβ(a) = aβ = D(f)(aα) = D(f)ηα(a)

Therefore ηβ = D(f)ηα.
Now suppose (B, {ζα}) is any cone to D. Then ζα : B → Dα and one can

form the coordinate map ζ : B → ΠDα satisfying ζ(b)α = ζα(b). We claim that
im ζ ⊆ A, so that ζ can be surjectified into a homomorphism θ : B → A. To
see this, use the fact that (B, {ζα}) is a cone, and hence

D(f)(ζ(a)α) = D(f)(ζα(a)) = D(f)ζα(a) = ζβ(a) = ζ(a)β

Therefore, θ exists and, and obviously ζα = ηαθ. Since an element of A is com-
pletely determined by where each ηα sends it, θ is unique. Therefore, (A, {ηα})
is a limit. �

Colimits are the dual of limits, and they are obtained by reversing the arrows.
This doesn’t mean make the functor J→ C contravariant, though [which could
be remedied anyway, by changing J into Jop]. If D : J → C is a diagram, a
cocone from D is defined to be a natural transformation from D to a constant
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functor. In summary, it is a pair (L, {ηα}) with L ∈ ob(C), ηα : Dα → L with
α ∈ ob(J), such that

L

Dα
D(f)
>

ηα

>

Dβ

ηβ

<

is commutative for suitable morphisms f in J. This is dual to a cone.

DEFINITION
Let D : J→ C be a diagram of type J in C. A colimit of D is defined to be

a cocone (L, {ηα}) from D such that for every cocone (B, {ζα}) from D, there
exists a unique morphism θ : L→ B such that ζα = θηα for all α.

Once again, it is routine to show uniqueness up to isomorphism of this.

EXAMPLES
1. If J is a discrete category, then a cocone is simply a pair (L, {ηα}) with

L ∈ ob(C) and ηα : Dα → L. The coherence diagram is automatic. It is easy
to see that a colimit of D is simply a coproduct of the Dα’s.

2. Let J be the category with only two objects α, β such that the only mor-
phisms are the identity morphisms and two morphisms α→ β. Then a colimit
of a diagram is a difference cokernel [or coequalizer] of the two morphisms. This
can be done with more than two morphisms as well.

3. Suppose J has three objects, α, β, γ and two nonidentity morphisms,
γ → α and γ → β. Then a colimit of a diagram is a pushout.

What’s quite unbelievable is that V(S) also contains all colimits! The material
covered in the previous chapter can be used to prove this.

THEOREM 2.4 Colimits exist in V(S) for any diagram D : J→ V(S).

Proof of Theorem 2.4. Let D : J → V(S) be a diagram. Then let A =∐
α∈ob(J)Dα, with injections iα : Dα → A for α ∈ ob(J). Now, let Θ be the

congruence relation on A generated by the following subset of A×A:

{(iβD(f)(a), iα(a)) | f : α→ β in J, a ∈ Dα}

Set L = A/Θ, π : A → L the canonical epimorphism and ηα = πiα for α ∈
ob(J). We claim that (L, {ηα}) is a cocone from D. To show this, we need to
show that ηβD(f) = ηα for f : α → β in J. This follows because for all a ∈
Dα, (iβD(f)(a), iα(a)) ∈ Θ by definition, so that ηβD(f)(a) = πiβD(f)(a) =
πiα(a) = ηα(a). Therefore, ηβD(f) = ηα and (L, {ηα}) is a cocone.

Now suppose (B, {ζα}) is another cocone from D. Then since each ζα :
Dα → B and A is the coproduct of the Dα’s, there is a unique morphism
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ζ : A→ B such that ζiα = ζα for all α. Whenever f : α→ β ∈ J and a ∈ Dα,

ζiβD(f)(a) = ζβD(f)(a) = ζα(a) = ζiα(a)

because the ζα’s form a cocone; hence (iβD(f)(a), iα(a)) ∈ ker ζ. Since the
congruence relation Θ is generated by pairs of that form, Θ ⊆ ker ζ, and ζ can
be injectified [Theorem 1.10] to a morphism θ : L→ B satisfying ζ = θπ.

Furthermore, ζα = ζiα = θπiα = θηα for all α.
Since any homomorphism θ′ satisfying ζα = θ′ηα agrees with θ on all ele-

ments of images of the ηα, but they generate L, θ is unique, completing the
proof. �

EXERCISES

1. Let J,C be categories, and CJ the functor category. Define the diagonal
functor ∆ : C→ CJ by sending each A ∈ ob(C) to the constant functor
onto A. For f : A → B in C, ∆(f) is the natural transformation η :
∆A ⇒ ∆B with ηα = f for all α. Show that a limit of a diagram D is a
universal from ∆ to the object D of CJ, and that a colimit is a universal
from D to ∆.

2. Suppose ι ∈ ob(J) is a initial object. If D : J → C is a diagram, then
(Dι, {ηα}) is a limit of D, where ηα is the result of applying D to the
unique morphism ι→ α in J. Dualize.

3. Show that any category with all products [including the terminal object]
and equalizers has all limits as follows. Let D : J → C be a diagram.
Now let A =

∏
α∈ob(J)Dα and P =

∏
f∈homJ(α,β)Dβ, where the latter

product is taken over all morphisms in J. Denote the projections from A as
p1
α : A→ Dα and the projections from P as p2

f : P → Dβ, f ∈ hom(α, β).

(a) Show that there is a unique morphism ϕ : A→ P such that p2
fϕ = p1

β

for f ∈ hom(α, β). [Hint : If you need a hint, think about how P is
defined.]

(b) Show that there is also a unique ψ : A→ P such that p2
fψ = D(f)p1

α

for f ∈ hom(α, β).

(c) Now let ε : L→ A be an equalizer of ϕ and ψ; show that (L, {p1
αε}) is

a limit of D.

(d) In a variety V(S) in universal algebra, recall that products are direct
products, and the equalizer of f, g : A1 → A2 is the canonical monomor-
phism from the subalgebra {a ∈ A1 | f(a) = g(a)}. Use this to find limits
in V(S). Are they really different from Theorem 2.3?

4. Let fi : Ai → B be morphisms in C for i = 1, 2. Then let gi : C → Ai,
i = 1, 2 be a pullback of f1 and f2. Prove that if f1 is monic then so is g2.
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5. A functor F : C → D is continuous if it preserves limits: Whenever
D : J→ C is a diagram and (A, {ηα}) is a limit of D, then (FA, {F (ηα)})
is a limit of FD. A cocontinuous functor is defined likewise, but for
colimits.

Let T : V(S1)→ V(S2) be a takeoff of varieties.

(a) The functor F : V(S1) → V(S2) given by Example 1 of Section 3, is
continuous. [Hint : Theorem 2.3 shows how to construct the limit. What
does the construction depend on?]

(b) The functor G : V(S2)→ V(S1) given by Example 12 of Section 3, is
cocontinuous. [Hint : This is a variation of Exercise 14 of Section 1.11.]

(c) If C is a complete category, then any functor F : C → D which
preserves products [including the terminal object] and equalizers is con-
tinuous. Dualize.
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