2.6 - Limits and Colimits

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if desired.

Products, pullbacks and difference kernels are all examples of a more general concept called the **limit**. To see this, let **J** be an "elementary" category [such as a discrete category], and $D : \mathbf{J} \to \mathbf{C}$ a functor. Then D is called a **diagram** of type **J** in **C**.

Define a **cone** to the diagram D to be a natural transformation from a constant functor onto an object L in \mathbb{C} [Example 5 of Section 3] to D. Stated otherwise, it is a pair $(L, \{\eta_{\alpha}\})$ with $L \in ob(\mathbb{C}), \eta_{\alpha} : L \to D\alpha$ with $\alpha \in ob(\mathbf{J})$, such that for every $f \in \hom_{\mathbf{J}}(\alpha, \beta)$ the following diagram is commutative:

Given this data we define

DEFINITION

Let $D : \mathbf{J} \to \mathbf{C}$ be a diagram of type \mathbf{J} in \mathbf{C} . A limit of D is defined to be a cone $(L, \{\eta_{\alpha}\})$ to D such that for every cone $(B, \{\zeta_{\alpha}\})$ to D, there exists a unique morphism $\theta : B \to L$ such that $\zeta_{\alpha} = \eta_{\alpha}\theta$ for all α .

Again it is routine to show the "uniqueness up to a unique isomorphism": if $(L, \{\eta_{\alpha}\})$ and $(L', \{\eta'_{\alpha}\})$ are both limits of D, there is a unique isomorphism $L' \to L$ such that $\eta'_{\alpha} = \eta_{\alpha}\sigma$ for all α . For one, this is an immediate consequence of limits being universals for suitably defined categories. See Exercise 1.

EXAMPLES

1. If **J** is a discrete category, then its only morphisms are the identity morphisms, and the commutativity of the diagram in the definition of a cone is a tautology. Thus a cone is simply a pair $(L, \{\eta_{\alpha}\})$ with $L \in ob(\mathbf{C})$ and $\eta_{\alpha} : L \to D\alpha$. It is easy to see that a limit of D is simply a product of the $D\alpha$'s [Section 4].

2. Let **J** be the category with only two objects α, β such that the only morphisms are the identity morphisms and two morphisms $\alpha \to \beta$. Then a diagram of type **J** in **C** is a pair of objects $A_{\alpha}, A_{\beta} \in ob(\mathbf{C})$ with two morphisms $f_1, f_2 : A_{\alpha} \to A_{\beta}$. A cone is a triple $(L, \eta_{\alpha}, \eta_{\beta})$ such that $\eta_{\beta} = f_1 \eta_{\alpha}$ and $\eta_{\beta} = f_2 \eta_{\alpha}$, or is identifiably a pair (L, η) with $f_1 \eta = f_2 \eta$. Thus a limit is a difference kernel [or equalizer] [see Exercise 2 of Section 2]. This can be done for more than two morphisms as well. 3. Suppose **J** has three objects, α, β, γ and two nonidentity morphisms, $\alpha \to \gamma$ and $\beta \to \gamma$. Then a diagram of type **J** in **C** is a triple of objects $A_1, A_2, A \in ob(\mathbf{C})$ with two morphisms $f_1 : A_1 \to A, f_2 : A_2 \to A$. A cone is identifiably a pair (L, η_1, η_2) such that $f_1\eta_1 = f_2\eta_2$ and a limit is therefore a pullback in this case.

One of the things which makes the category $\mathbf{V}(S)$ so special is that it contains all limits. That is, every diagram in $\mathbf{V}(S)$ of any type has a limit, as we now prove. [Such a category is called a **complete category**.]

THEOREM 2.3 Limits exist in $\mathbf{V}(S)$ for any diagram $D: \mathbf{J} \to \mathbf{V}(S)$.

Proof of Theorem 2.3. Let $D : \mathbf{J} \to \mathbf{V}(S)$ be a diagram. Then define A to be the following subset of the product $\prod_{\alpha \in \mathrm{ob}(\mathbf{J})} D\alpha$:

$$A = \{ a \in \prod_{\alpha \in \mathrm{ob}(\mathbf{J})} D\alpha \mid D(f)(a_{\alpha}) = a_{\beta} \; \forall f \in \hom_{\mathbf{J}}(\alpha, \beta) \}$$

We claim that A is a subalgebra of the product. Suppose $\omega \in \Omega(0)$, then $(\omega_{\Pi D\alpha}) \in A$ because $D(f)(\omega_{D\alpha}) = (\omega_{D\beta})$ for all $f : \alpha \to \beta$. Now suppose $n \ge 1, \omega \in \Omega(n)$ and $a^1, a^2, \ldots a^n \in A$. Then for all $f : \alpha \to \beta$,

$$D(f)((\omega a^1 a^2 \dots a^n)_{\alpha}) = D(f)(\omega a^1_{\alpha} a^2_{\alpha} \dots a^n_{\alpha}) = (\omega D(f)(a^1_{\alpha})D(f)(a^2_{\alpha})\dots D(f)(a^n_{\alpha}))$$
$$= (\omega a^1_{\beta} a^2_{\beta} \dots a^n_{\beta}) = (\omega a^1 a^2 \dots a^n)_{\beta}$$

Therefore, $(\omega a^1 a^2 \dots a^n) \in A$, and A is a subalgebra. Now let $\eta_{\alpha} : A \to D\alpha$ be the restricted projections [that is, $p_{\alpha}(a) = a_{\alpha}$ for $a \in A$]. Then $(A, \{\eta_{\alpha}\})$ is a cone to D because the η_{α} are homomorphisms and for all $f : \alpha \to \beta$ in **J**,

$$\eta_{\beta}(a) = a_{\beta} = D(f)(a_{\alpha}) = D(f)\eta_{\alpha}(a)$$

Therefore $\eta_{\beta} = D(f)\eta_{\alpha}$.

Now suppose $(B, \{\zeta_{\alpha}\})$ is any cone to D. Then $\zeta_{\alpha} : B \to D\alpha$ and one can form the coordinate map $\zeta : B \to \Pi D_{\alpha}$ satisfying $\zeta(b)_{\alpha} = \zeta_{\alpha}(b)$. We claim that im $\zeta \subseteq A$, so that ζ can be surjectified into a homomorphism $\theta : B \to A$. To see this, use the fact that $(B, \{\zeta_{\alpha}\})$ is a *cone*, and hence

$$D(f)(\zeta(a)_{\alpha}) = D(f)(\zeta_{\alpha}(a)) = D(f)\zeta_{\alpha}(a) = \zeta_{\beta}(a) = \zeta(a)_{\beta}$$

Therefore, θ exists and, and obviously $\zeta_{\alpha} = \eta_{\alpha} \theta$. Since an element of A is completely determined by where each η_{α} sends it, θ is unique. Therefore, $(A, \{\eta_{\alpha}\})$ is a limit.

Colimits are the dual of limits, and they are obtained by reversing the arrows. This doesn't mean make the functor $\mathbf{J} \to \mathbf{C}$ contravariant, though [which could be remedied anyway, by changing \mathbf{J} into \mathbf{J}^{op}]. If $D : \mathbf{J} \to \mathbf{C}$ is a diagram, a **cocone** from D is defined to be a natural transformation from D to a constant functor. In summary, it is a pair $(L, \{\eta_{\alpha}\})$ with $L \in ob(\mathbf{C}), \eta_{\alpha} : D\alpha \to L$ with $\alpha \in ob(\mathbf{J})$, such that

is commutative for suitable morphisms f in **J**. This is dual to a cone.

DEFINITION

Let $D : \mathbf{J} \to \mathbf{C}$ be a diagram of type \mathbf{J} in \mathbf{C} . A colimit of D is defined to be a cocone $(L, \{\eta_{\alpha}\})$ from D such that for every cocone $(B, \{\zeta_{\alpha}\})$ from D, there exists a unique morphism $\theta : L \to B$ such that $\zeta_{\alpha} = \theta \eta_{\alpha}$ for all α .

Once again, it is routine to show uniqueness up to isomorphism of this.

EXAMPLES

1. If **J** is a discrete category, then a cocone is simply a pair $(L, \{\eta_{\alpha}\})$ with $L \in ob(\mathbf{C})$ and $\eta_{\alpha} : D\alpha \to L$. The coherence diagram is automatic. It is easy to see that a colimit of D is simply a coproduct of the $D\alpha$'s.

2. Let **J** be the category with only two objects α, β such that the only morphisms are the identity morphisms and two morphisms $\alpha \to \beta$. Then a colimit of a diagram is a difference cokernel [or coequalizer] of the two morphisms. This can be done with more than two morphisms as well.

3. Suppose **J** has three objects, α, β, γ and two nonidentity morphisms, $\gamma \to \alpha$ and $\gamma \to \beta$. Then a colimit of a diagram is a pushout.

What's quite unbelievable is that $\mathbf{V}(S)$ also contains all colimits! The material covered in the previous chapter can be used to prove this.

THEOREM 2.4 Colimits exist in $\mathbf{V}(S)$ for any diagram $D: \mathbf{J} \to \mathbf{V}(S)$.

Proof of Theorem 2.4. Let $D : \mathbf{J} \to \mathbf{V}(S)$ be a diagram. Then let $A = \coprod_{\alpha \in \mathrm{ob}(\mathbf{J})} D\alpha$, with injections $i_{\alpha} : D\alpha \to A$ for $\alpha \in \mathrm{ob}(\mathbf{J})$. Now, let Θ be the congruence relation on A generated by the following subset of $A \times A$:

$$\{(i_{\beta}D(f)(a), i_{\alpha}(a)) \mid f : \alpha \to \beta \text{ in } \mathbf{J}, a \in D\alpha\}$$

Set $L = A/\Theta$, $\pi : A \to L$ the canonical epimorphism and $\eta_{\alpha} = \pi i_{\alpha}$ for $\alpha \in ob(\mathbf{J})$. We claim that $(L, \{\eta_{\alpha}\})$ is a cocone from D. To show this, we need to show that $\eta_{\beta}D(f) = \eta_{\alpha}$ for $f : \alpha \to \beta$ in \mathbf{J} . This follows because for all $a \in D_{\alpha}$, $(i_{\beta}D(f)(a), i_{\alpha}(a)) \in \Theta$ by definition, so that $\eta_{\beta}D(f)(a) = \pi i_{\beta}D(f)(a) = \pi i_{\alpha}(a) = \eta_{\alpha}(a)$. Therefore, $\eta_{\beta}D(f) = \eta_{\alpha}$ and $(L, \{\eta_{\alpha}\})$ is a cocone.

Now suppose $(B, \{\zeta_{\alpha}\})$ is another cocone from D. Then since each ζ_{α} : $D\alpha \to B$ and A is the coproduct of the $D\alpha$'s, there is a unique morphism

 $\zeta: A \to B$ such that $\zeta i_{\alpha} = \zeta_{\alpha}$ for all α . Whenever $f: \alpha \to \beta \in \mathbf{J}$ and $a \in D\alpha$,

$$\zeta i_{\beta} D(f)(a) = \zeta_{\beta} D(f)(a) = \zeta_{\alpha}(a) = \zeta i_{\alpha}(a)$$

because the ζ_{α} 's form a cocone; hence $(i_{\beta}D(f)(a), i_{\alpha}(a)) \in \ker \zeta$. Since the congruence relation Θ is generated by pairs of that form, $\Theta \subseteq \ker \zeta$, and ζ can be injectified [Theorem 1.10] to a morphism $\theta : L \to B$ satisfying $\zeta = \theta \pi$.

Furthermore, $\zeta_{\alpha} = \zeta i_{\alpha} = \theta \pi i_{\alpha} = \theta \eta_{\alpha}$ for all α .

Since any homomorphism θ' satisfying $\zeta_{\alpha} = \theta' \eta_{\alpha}$ agrees with θ on all elements of images of the η_{α} , but they generate L, θ is unique, completing the proof.

EXERCISES

- 1. Let \mathbf{J}, \mathbf{C} be categories, and $\mathbf{C}^{\mathbf{J}}$ the functor category. Define the **diagonal** functor $\Delta : \mathbf{C} \to \mathbf{C}^{\mathbf{J}}$ by sending each $A \in \mathrm{ob}(\mathbf{C})$ to the constant functor onto A. For $f : A \to B$ in $\mathbf{C}, \Delta(f)$ is the natural transformation $\eta :$ $\Delta A \Rightarrow \Delta B$ with $\eta_{\alpha} = f$ for all α . Show that a limit of a diagram D is a universal from Δ to the object D of $\mathbf{C}^{\mathbf{J}}$, and that a colimit is a universal from D to Δ .
- 2. Suppose $\iota \in ob(\mathbf{J})$ is a initial object. If $D : \mathbf{J} \to \mathbf{C}$ is a diagram, then $(D\iota, \{\eta_{\alpha}\})$ is a limit of D, where η_{α} is the result of applying D to the unique morphism $\iota \to \alpha$ in \mathbf{J} . Dualize.
- 3. Show that any category with all products [including the terminal object] and equalizers has all limits as follows. Let $D : \mathbf{J} \to \mathbf{C}$ be a diagram. Now let $A = \prod_{\alpha \in \mathrm{ob}(\mathbf{J})} D\alpha$ and $P = \prod_{f \in \mathrm{hom}_{\mathbf{J}}(\alpha,\beta)} D\beta$, where the latter product is taken over all morphisms in \mathbf{J} . Denote the projections from A as $p_{\alpha}^{1} : A \to D\alpha$ and the projections from P as $p_{f}^{2} : P \to D\beta$, $f \in \mathrm{hom}(\alpha, \beta)$.

(a) Show that there is a unique morphism $\varphi : A \to P$ such that $p_f^2 \varphi = p_\beta^1$ for $f \in \hom(\alpha, \beta)$. [*Hint*: If you need a hint, think about how P is defined.]

(b) Show that there is also a unique $\psi : A \to P$ such that $p_f^2 \psi = D(f) p_\alpha^1$ for $f \in \hom(\alpha, \beta)$.

(c) Now let $\epsilon : L \to A$ be an equalizer of φ and ψ ; show that $(L, \{p_{\alpha}^{1} \epsilon\})$ is a limit of D.

(d) In a variety $\mathbf{V}(S)$ in universal algebra, recall that products are direct products, and the equalizer of $f, g : A_1 \to A_2$ is the canonical monomorphism from the subalgebra $\{a \in A_1 \mid f(a) = g(a)\}$. Use this to find limits in $\mathbf{V}(S)$. Are they really different from Theorem 2.3?

4. Let $f_i : A_i \to B$ be morphisms in **C** for i = 1, 2. Then let $g_i : C \to A_i$, i = 1, 2 be a pullback of f_1 and f_2 . Prove that if f_1 is monic then so is g_2 .

5. A functor $F : \mathbf{C} \to \mathbf{D}$ is **continuous** if it *preserves limits*: Whenever $D : \mathbf{J} \to \mathbf{C}$ is a diagram and $(A, \{\eta_{\alpha}\})$ is a limit of D, then $(FA, \{F(\eta_{\alpha})\})$ is a limit of FD. A **cocontinuous** functor is defined likewise, but for colimits.

Let $T: \mathcal{V}(S_1) \to \mathcal{V}(S_2)$ be a takeoff of varieties.

(a) The functor $F : \mathbf{V}(S_1) \to \mathbf{V}(S_2)$ given by Example 1 of Section 3, is continuous. [*Hint*: Theorem 2.3 shows how to construct the limit. What does the construction depend on?]

(b) The functor $G : \mathbf{V}(S_2) \to \mathbf{V}(S_1)$ given by Example 12 of Section 3, is cocontinuous. [*Hint*: This is a variation of Exercise 14 of Section 1.11.]

(c) If **C** is a complete category, then any functor $F : \mathbf{C} \to \mathbf{D}$ which preserves products [including the terminal object] and equalizers is continuous. Dualize.