2.4 - Products and Coproducts

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on Dozzie Abstract Algebra.

Objects in a category can be combined in interesting ways. Two of the convenient operators combining them are products and coproducts. To see what they are like, consider $\mathcal{V}(S)$ algebras.

If the A_{α} are $\mathcal{V}(S)$ algebras, one can take $A = \Pi A_{\alpha}$, along with the projection homomorphisms $p_{\alpha} : A \to A_{\alpha}$ from the product.

Now suppose B is a Ω -algebra and $f_{\alpha}: B \to A_{\alpha}$ is a homomorphism for each α . Define $f: B \to A$ so that $f(b)_{\alpha} = f_{\alpha}(b)$. That determines f(b) for each b, and it is seen that f is the only homomorphism $B \to A$ such that $f_{\alpha} = p_{\alpha}f$ for all α . This illustrates a product in terms of purely homomorphisms:

Whenever $f_{\alpha}: B \to A_{\alpha}$ is a homomorphism for each α , there is a unique homomorphism $f: B \to \Pi A_{\alpha}$ such that $f_{\alpha} = p_{\alpha}f$ for all α .

This property leads to the following definition in category theory.

DEFINITION

Let $\{A_{\alpha}\}\$ be a batch of objects in a category \mathbb{C} [with possible repetitions]. A **product** of the A_{α} 's is a pair $(A, \{p_{\alpha}\})$ with $A \in ob(\mathbb{C})$ and $p_{\alpha} : A \to A_{\alpha}$ for each α , such that whenever $B \in ob(\mathbb{C})$ and $f_{\alpha} : B \to A_{\alpha}$ for each α , there is a unique morphism $f : B \to A$ such that for all α we have $p_{\alpha}f = f_{\alpha}$; in other words,

is commutative.

The fact that the definition says "a product," rather than "the product," can be remedied, as Exercise 1 shows that products are unique up to a unique isomorphism.

EXAMPLES

- 1. We have just shown that products in $\mathbf{V}(S)$ coincide with the product of algebras in Chapter 1, Section 2.
- 2. If $\{(A_{\alpha}, B_{\alpha})\}$ are objects in $\mathbf{V}(S)$ -sub, notice that with each B_{α} a subalgebra of A_{α} , ΠB_{α} is a subalgebra of ΠA_{α} . We claim that $(\Pi A_{\alpha}, \Pi B_{\alpha})$, along with the usual projections $p_{\alpha} : \Pi A_{\alpha} \to A_{\alpha}$, is a product of the objects in $\mathbf{V}(S)$ -sub. To begin with, the p_{α} 's are admitted by the category since p_{α} sends elements of ΠB_{α} to elements of B_{α} . Now suppose $f_{\alpha} : (C, C_1) \to (A_{\alpha}, B_{\alpha})$ are morphisms. This requires that each f_{α} is a homomorphism $C \to A_{\alpha}$ satisfying

 $f_{\alpha}(C_1) \subseteq B_{\alpha}$. With that, if $f: C \to A_{\alpha}$ is the coordinate map $[p_{\alpha}f = f_{\alpha}$ for each α], $f(C_1) \subseteq \Pi B_{\alpha}$. This means f is a morphism $(C, C_1) \to (\Pi A_{\alpha}, \Pi B_{\alpha})$, and is clearly the only one satisfying $p_{\alpha}f = f_{\alpha}$. This proves our claim.

- 3. Let $\{(A_{\alpha}, \Phi_{\alpha})\}$ be objects in $\mathbf{V}(S)$ -con. For $a, b \in \Pi A_{\alpha}$, define $a\Phi b$ if $a_{\alpha}\Phi_{\alpha}b_{\alpha}$ for all α . Then this is a congruence relation on ΠA_{α} , and an argument similar to the one above shows that $(\Pi A_{\alpha}, \Phi)$ is a product of the objects in $\mathbf{V}(S)$ -con.
 - 4. Products in Cat are product categories with the projection functors.
- 5. If $\mathcal{V}(S_1)$ and $\mathcal{V}(S_2)$ are varieties, one can form a new variety $\mathcal{V}(S_3)$ taking disjoint unions of operators and identities. That is, $\Omega_3(n) = \Omega_1(n) \uplus \Omega_2(n)$ for $n \geq 0$ and $S_3 = S_1 \uplus S_2$. Then a $\mathcal{V}(S_3)$ algebra is precisely a set with both a $\mathcal{V}(S_1)$ structure and a $\mathcal{V}(S_2)$ structure which are independent of one another. Takeoffs $\mathcal{V}(S_3) \to \mathcal{V}(S_1)$, $\mathcal{V}(S_2)$ can be formed, each dropping one of the structures, and $\mathcal{V}(S_3)$ is a product of $\mathcal{V}(S_1)$ and $\mathcal{V}(S_2)$ in the category \mathbf{Var} .
- 6. What does it mean for an object T to be a product of the empty batch $\{\}$? Well, there are no p_{α} 's involved in this case, and whenever $B \in \text{ob}(\mathbf{C})$ [there are no f_{α} 's involved], there is a unique morphism $f: B \to T$ [no diagram commutativity is needed]. Stated otherwise, for all $B \in \text{ob}(\mathbf{C})$, hom(B, T) consists of a single element; in other words, T is a terminal object.

Coproducts are basically the dual of products, and in fact, we have already started them in Section 9 of Chapter 1. They carry over to category theory.

DEFINITION

Let $\{A_{\alpha}\}\$ be a batch of objects in a category \mathbb{C} [with possible repetitions]. A **coproduct** of the A_{α} 's is a pair $(A, \{i_{\alpha}\})$ with $A \in ob(\mathbb{C})$ and $i_{\alpha} : A_{\alpha} \to A$ for each α , such that whenever $B \in ob(\mathbb{C})$ and $f_{\alpha} : A_{\alpha} \to B$ for each α , there is a unique morphism $f : A \to B$ such that for all α we have $fi_{\alpha} = f_{\alpha}$; in other words,

is commutative.

Coproducts are basically products in the opposite category \mathbf{C}^{op} . Coproducts in $\mathbf{V}(S)$ coincide with the definition of a coproduct in Section 9 of Chapter 1. There, we proved that coproducts always exist in $\mathbf{V}(S)$, and here we shall use the proof to derive a subtle and interesting explanation on how to find them.

- 1. Suppose you are given a batch $\{A_{\alpha}\}$. Let F be the free algebra given by the set $\uplus A_{\alpha}$ with set $map \ i : \uplus A_{\alpha} \to F$. Then form $j_{\alpha} : A_{\alpha} \to F$ for each α by composing i with each injection $A_{\alpha} \to \uplus A_{\alpha}$.
- 2. To make each j_{α} a homomorphism, identify any expression in F whose symbols come from a single A_{α} with its value given by A_{α} . That is, identify

 $(\omega j_{\alpha}(a_1)j_{\alpha}(a_2)\dots j_{\alpha}(a_n))$ with $j_{\alpha}(\omega a_1a_2\dots a_n)$. To do this, find the congruence relation Θ on F generated by those pairs and let $\pi: F \to F/\Theta$ be the canonical epimorphism. Make no more identifications than that or it won't work.

3. Then each πj_{α} is a homomorphism and $(F/\Theta, \pi j_{\alpha})$ is a coproduct of the A_{α} 's.

To make a long story short, the coproduct of algebras consists of expressions whose symbols are in all the algebras, such that the identities in S are satisfied, and any expression with its symbols in a single algebra is identified with the value the algebra gives it. You can give each algebra a different color to see this easily. Operator symbols and parentheses have no color.

In the case of groups, this precise procedure gives the familiar free product on groups; same for monoids. Also, it gives R-modules their direct sum, and commutative rings their $tensor\ product$ [to be learned later].

EXERCISES

1. Let $\{A_{\alpha}\}$ be a batch of objects in a category \mathbf{C} . If $(A, \{p_{\alpha}\})$ and $(A', \{p'_{\alpha}\})$ are both products of the A_{α} 's in \mathbf{C} , there is a unique isomorphism $\sigma : A \to A'$ such that for all indices α the diagram

is commutative. Dualize.

2. Let $\{A_{\alpha}\}$ be a batch of objects in a category \mathbf{C} . Define $\mathbf{C}/\{A_{\alpha}\}$ as follows: $\mathrm{ob}(\mathbf{C}/\{A_{\alpha}\})$ is the class of pairs of the form $(B,\{f_{\alpha}\})$ where $B\in\mathrm{ob}(\mathbf{C})$ and $f_{\alpha}:B\to A_{\alpha}$ for each α , and $\mathrm{hom}((B,\{f_{\alpha}\}),(B',\{f'_{\alpha}\}))$ is the set of morphisms $u:B\to B'$ such that for every α

$$\begin{array}{c|c}
B & f_{\alpha} \\
u & A_{\alpha} \\
B' & f'_{\alpha}
\end{array}$$

is commutative. Define composition of morphisms and identity morphisms as in \mathbf{C} . Verify that this data form a category, and that a product of the A_{α} 's is a terminal object in $\mathbf{C}/\{A_{\alpha}\}$. Dualize.

- 3. If T is a terminal object of category \mathbf{C} , show that A is a product of T and A and determine the projection maps.
- 4. If I is an initial object of a category \mathbb{C} , show that A is a coproduct of I and A.
- 5. If ${\bf C}$ is a category given by a preorder [Example 7 of Section 1], describe products of objects in ${\bf C}$.

- 6. (a) Suppose C is a category in which any two objects in C have a product in C. [Such a category is called a **category with finite products**.] Show that any finite batch of objects in C has a product in C.
 - (b) Give an example of a category ${\bf C}$ with finite products having an infinite batch of objects with no product.
- 7. Let $f_1:A_1\to B_1$ and $f_2:A_2\to B_2$ be morphisms in a category ${\bf C}$. Suppose (A,p_1,p_2) is a product of A_1 and A_2 and (B,q_1,q_2) is a product of B_1 and B_2 .
 - (a) There is a unique morphism $f:A\to B$ such that the two rectangles in

$$A_{1} \stackrel{p_{1}}{\longleftarrow} A \stackrel{p_{2}}{\longrightarrow} A_{2}$$

$$f_{1} \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f_{2}$$

$$B_{1} \stackrel{q_{1}}{\longleftarrow} B \stackrel{q_{2}}{\longrightarrow} B_{2}$$

are commutative.

- (c) Suppose **C** is a category with finite products. Define $F: \mathbf{C} \times \mathbf{C} \to \mathbf{C}$ as follows: Assign each object (A_1, A_2) to a product of A_1 and A_2 , and each morphism (f_1, f_2) to the morphism f given in part (a). Verify that F is a functor. It is called the *product-giving functor* for **C**.
- (d) Any two functors defined in the way of (c) are naturally isomorphic.