2.1 - Definition and Examples of Categories
Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

The first chapter generalized the notion of an algebraic structure, and dealt
with homomorphisms in between them. Now we do something even weirder: we
generalize the notion of a homomorphism, not necessarily between sets!

A category consists of a community of objects and morphisms between them.
It does not have any trivial structure we have previously dealt with. However,
given a category, we can define many things reasonably, and give proofs which
focus on morphisms. It just comes to a challenge that we cannot treat the
objects like sets [until Section 9 comes along].

This is an ubiquitous concept in mathematics. It starts out involving alge-
braic structures, but then changes to entirely different structures, like the ones
in the later chapters. What’s more awkward is that categories have morphisms
of their own [Section 3], and these morphisms have their own morphisms!

To see what morphisms would look like, recall the basic properties of homo-
morphisms of V(S) algebras.

To begin with, the domain and codomain of a homomorphism are intrinsic, even
though surjectification is possible. [For example, the set map {0} — Z sending
0 to 2 is different from the map {0} — R sending 0 to 2.] This is a rule which
prevents any confusion in category theory.

The second thing to realize is that if f : A — B and g : B — C are
homomorphisms, so is gf : A — C [Theorem 1.4(1)]. Reread the statement in
the proof if you don’t remember why.

Next, if f: A — B, g: B — C and h : C — D, then (hg)f = h(gf),
because both send = € A to h(g(f(x))) € D. It is well-known that composition
of functions is associative, no matter what the functions are.

The final thing about homomorphisms is that 14 : A — A is a homomor-
phism [Theorem 1.4(2)], and whenever f : A — B and g : B — A, clearly
fla=fand lag=g.

Abstracting the properties just gone over:

DEFINITION

A category is a mathematical object C with new structure given by the
following:

(1) ob(C) is a class, whose elements are called the objects of C.

(2) For each A, B € 0b(C), homc (A, B) [or hom(A, B) if C is clearly under
discussion] is a set whose elements are called morphisms from A to B. One
writes f: A — B for f € hom(A, B).

(3) If (A, B) # (A’, B’), hom(A, B) and hom(A’, B") are disjoint.

(4) Whenever f : A — B and g : B — C, the composite function gf is
some morphism A — C. Stated otherwise, for each A, B,C € ob(C), a map
hom(B, C) x hom(A, B) — hom(A, C) is equipped.



(5) [associativity] When f : A - B, g: B— C and h: C — D, (hg)f =
h(gf). As usual, we simplify this to hgf.

(6) [identity] For each A € ob(C), there is a morphism 14 : A — A such
that whenever f : A — B and g: B — A, fla = f and 149 = g. 14 is called
the identity morphism on A.

REMARKS Condition (3) is useful, but it is not very necessary. Whatever
sets the hom(A, B)’s are, their elements could be tagged indicating where they
are, making the sets disjoint. And the identity morphism 14 is unique, because
if 1’y : A — A also satisfies the condition, 14 = 141’y =1/;.

Since this definition is hard to understand, examples would surely help.

EXAMPLES

1. A variety V(S) becomes a category V(S) with ob(V(S)) the class of V()
algebras, and hom(A, B) the set of homomorphisms A — B, where composition
of morphisms is the usual function composition and 14 : A — A is the identity
map on A. [Note that hom(A, B) may be empty.] In particular, varieties we
know already yield the categories Mon [monoids], Grp [groups], Ab [abelian
groups|, Ring [rings], Rng [rngs], Rinv [rings with involution], R—mod [left
R-modules with R a given ring], M —act [left M-actions], and lots more ... and,
of course, Set, the category of sets.

2. In fact, using Exercise 5 of Section 1.11, one can form the category
of all varieties Var where the morphisms are takeoffs. This category is quite
complicated, because of the possible difficulty in verifying the axioms.

3. The integral domains form a category Dom where homomorphisms are
the usual ring homomorphisms. Note, however, that the integral domains don’t
form a variety.

4. The fields form a category Field where homomorphisms are the usual
ring homomorphisms. Note, by the way, that all of the homomorphisms are
injective! [Exercise 1] Similarly, if F' is a particular field, one could form the
category F-Ext of extension fields of F', where only homomorphisms that send
every element of F' to itself are admitted.

5. A category C is said to be discrete provided hom(A, B) = §§ when A # B
and hom(A, A) = {14}. Discrete categories can be identified purely with their
objects.

6. Notice that if A is an object in C, hom(A, A) is a monoid with the categor-
ical structure. Every monoid can be found this way: let M be a monoid. Define
M by saying that ob(M) = {A}, and hom(A, A) = M, where composition of
morphisms agree with the binary operation in M and the identity morphism is
1 € M. Then the validity of the axioms is clear.

7. Let S be a set with a preorder [i.e. reflexive and transitive] relation <.
Define a category S by ob(S) = S, and when a,b € S, hom(a,b) has exactly
one morphism if a < b, otherwise hom(a,b) = . Then S is a category with
composition and identity maps unique determined, and is said to be a category
given by a preorder.



8. [New categories from old] Let C and D be arbitrary categories. Define a
new category C x D by specifying that ob(C x D) is the class of pairs (A4, B)
with A € ob(C) and B € ob(D), and homexp((4, B), (C, D)) = home (4, C) x
homp (B, D), the set of pairs of the form (f, g) where f : A —- Cand g: B — D.
Define (g,91)(f, f1) = (9f,91f1) when possible and 14 gy = (14,1p). This is
easily seen to be a category. It is called the product category of C and D.

9. If C is an arbitrary category, the objects in C~ are the morphisms in
C, and whenever f: A — B and g: C — D in C, hom(f, g) is the set of pairs
(h,k) with h: A — C and k : B — D such that the diagram

A%C

f\L \Lg

B—"sDp
is commutative. The hom sets may not be disjoint, but as I said, you can
make them disjoint with the use of tags. If (h1, k1) (he, k2) = (h1he, k1ks) when
possible and 1(4 gy = (14, 1), this is also a category, but a bit more interesting.

10. Let C be an arbitrary category, and define C°P as follows: ob(C°P) =
ob(C); whenever A, B € ob(C), homger (A, B) = homc(B,A); if f: A — B
and g : B — C in C°P, define gf : A — C to be fg as given by C, and 14
in C°P the same as that in C. This is clearly a category; it is called the dual
category of C.

11. Let A be an arbitrary object of a category C. Define C/A as follows:
ob(C/A) is the class of pairs of the form (B, f) where B € ob(C) and f : B —
A. For (B, f),(C,g) € ob(C/A), hom((B, f),(C,g)) is the set of morphisms
u : B — C such that f = gu, that is,

is commutative. Tag the morphisms to make the hom sets disjoint. Then it is
easy to see that C/A becomes a category by defining composition of morphisms
and identity morphisms to agree with C. C/A is called the category of objects
in C below A.

12. Likewise, define C\ A by agreeing that ob(C\A) is the class of pairs of
the form (B, f) where f : A — B, and hom((B, f),(C,g)) is the set of mor-
phisms u : B — C such that uf = g. C\A is then a category, called the
category of objects in C above A.

Note that ob(C) is a class. It may not be a set, as we now see.

S = ob(Set) is supposed to be the class of all sets. If S were a set, we could
legally form X = {z € S | x ¢ z} [since every x € S is a set, a € x is a defined
statement]. But then X € X if and only if X ¢ X, so this is an impossible



situation. Hence, S cannot be a set without resulting in paradoxes. So § is said
to be a proper class.

In rare occasions, such as in examples 6 and 7 above, ob(C) is a set. If C
is a category such that ob(C) is a set, C is said to be a small category.

An isomorphism in a category is exactly what one would expect: f: A —
B is an isomorphism provided that there exists g : B — A such that gf =14
and fg = 1p. In that case, ¢ is unique, and is denoted f~!.

Subcategories

Remarkably, it already follows that isomorphisms compose into isomorphisms.
If f: A — B is an isomorphism with inverse f~! and ¢ : B — C is an iso-
morphism with inverse ¢!, then gf : A — C is an isomorphism with inverse
f~lg7t: C — A. And of course, 14 is an isomorphism. This illustrates the
following definition:

DEFINITION

A category D is said to be a subcategory of a category C provided that:

(1) ob(D) is a subclass of 0b(C).

(2) Whenever A, B € 0ob(D), homp (A, B) is a subset of home (A4, B).

(3) Whenever f: A — B and g : B — C in D, the composite gf : A — C
given by C is in homp (A, C) and is the composite gf given by D.

(4) For each A € D, C’s identity morphism 14 is in homp(A, A) as D’s
identity morphism.

If also homp (A, B) = homc(A, B) for all A, B € ob(D), D is said to be a
full subcategory of C.

Notice that subcategories of C can be identified purely in terms of their objects
and morphisms, because C already gives the rest of the structure. And full
subcategories can be identified from just the objects! They hypothetically leave
all morphisms that they can.

EXAMPLES

1. Since every group is a monoid, no two groups can be the same monoid
and every group homomorphism is a homomorphism of the monoids, Grp is
a subcategory of Mon. However, Mon is not a subcategory of Set, because
a set can be many different monoids. Mon is a subcategory of Semgrp [the
semigroups| because a semigroup can’t have more than one identity element.

2. Every monoid homomorphism of groups is automatically a group homo-
morphism, so Grp is a full subcategory of Mon. However, there exist maps of
monoids preserving multiplication which don’t map 1 to 1, hence Mon is not a
full subcategory of Semgrp.

3. Since a rng can be at most one ring with the same addition and multipli-
cation, Ring is a subcategory of Rng.



4. Since the isomorphisms in a category C are closed under defined compo-
sition and involve all identity morphisms, one can form a subcategory of C by
keeping precisely the isomorphisms.

EXERCISES

1.

If F and G are fields and f : F — G is a homomorphism, then f is
injective. [Hint: What are the ideals in a field?)

(a) Suppose V(S1) and V(S2) are varieties, where every operator for V(Sz)
is in V(51) and every identity in Ss is in Sy. Then every V(S;) algebra is
also a V(S2) algebra, and homomorphisms between V(S;) algebras are also
homomorphisms with V(S3)’s structure. Assume no two V(S7) algebras
can have the same V(S3) structure. Show that V(S;) is a subcategory of
V(Ss).

(b) If V(S1) and V(S3) have exactly the same operators, then V(5) is a
full subcategory of V(Ss).

(¢) Show by example that V(S7) may have operators that V(S3) doesn’t,
but V(S1) is still a full subcategory of V(Sz).

(a) An object I in a category C is said to be initial provided that for every
object A, there is exactly one morphism in hom(I, A). For example, Is ()
is initial in V(S) [see Exercise 10 of Section 1.9] and the King variety is
initial in Var [see Exercise 4 of Section 1.11]. Show that any two initial
objects in a category are isomorphic.

(b) An object T is said to be terminal provided that for every object
A, there is exactly one morphism in hom(A,T). For example, T(Q) is
terminal in V(5), and the variety of sets is terminal in Var. Explain why
any two terminal objects in a category are isomorphic.

(c) Whenever A is an object in a category C, C/A has a terminal object,
and C\A4 has an initial object. [Hint: Try (A, 14).]

(d) A zero object in a category C is an object which is both initial
and terminal. If C has a zero object, show that one can assign each pair
(A, B) of objects in C a morphism 04 g € hom(A, B) such that Op pg =
04,5 = f0a,c when they are defined. In particular, show hom(A, B) is
never empty for any objects A, B € ob(C).

(a) C is a full subcategory for C, for every category C.

(b) If E is a subcategory of D and D is a subcategory of C, then E is a
subcategory of C.

(c) Prove part (b) with “subcategory” replaced with “full subcategory.”

A category C is discrete if and only if every subcategory of C is a full
subcategory.

Is Ring is a full subcategory of Rng?



7. (a) Let V(S) be a variety, and form a category V(S)—sub as follows: the
objects are the pairs of the form (A, A;) with A € V(S), A; a subalgebra
of A, and hom((A4, A1), (B, B1)) consists of homomorphisms f : A — B
such that f(A;) C By. Verify that this data forms a category with the
usual composition of morphisms and identity morphisms.

(b) Likewise, define V(S)—con as follows: the objects are the pairs of
the form (A4,®) with A € V(S), ® a congruence relation on A, and
hom((4, ®), (B, 0)) consists of homomorphisms f : A — B such that
whenever a®b in A, f(a)Of(b) in B. Then V(S)—con is a category.

8. A small category C in which all morphisms are isomorphisms is called a
groupoid. In this exercise we establish a non-categorial definition of a
groupoid. We see it as a set G equipped with the following structure:

(1) Whenever a,b € G, ab is either some element of G or is undefined.
[This is a partial operator.]

2) Whenever a € G, a™ ! is some element of G.

(
(3) [associativity] Whenever ab and bc are defined in G, then (ab)c and
a(be) are defined and (ab)c = a(be).

(4) [inverse] aa~! and a~'a are always defined for a € G.

(5) [identity] Whenever ab is defined in G, abb~! = a and a~tab = b. [Note
that rules (3) and (4) already show that those expressions are defined and
unambiguous.|

(a) If C is a groupoid, consider G = W4 peop(c) hom(4, B). Ifa: A — B
and b : A” — B’ are in G, define ab to be ab : A’ — B as given in C if
A = B’, and undefined if A # B’. Then define a=! to be a™! : B — A as
given in C. Verify rules (3), (4), (5) for G.

Now suppose G is any set equipped with structure satisfying the five rules
above. Show that for a,b € G:

(b) (a=Y)~! = a. [Hint: Why is (a~')"ta"'a defined? Change it in two
ways.]

(c) If ab is defined, then b='a~! is defined and b=1a~! = (ab)~!. [Hint:
b='a"lab and ab(ab)~! are defined [why?].]

(d) For a,b € G, define a®b to mean that ab~! is defined. Then ® is an
equivalence relation on G.

(e) Ifa € G, T(a) ={x € G| xa is defined} is an equivalence class of @,
which may be different from a’s. [Yes, this means it must be nonempty.]
(f) Define ob(C) = G/®, the set of equivalence classes, and for A, B €
G/®, hom(A,B) = {a € A | T(a) = B}. If a € hom(A,B) and b €
hom(B, C), ba € hom(A4,C). Also, a~'a is the same for all a € A, and
is an identity morphism in hom(A, A). Conclude that C is a groupoid in
the categorical sense.



(g) Take a look at the translations for a groupoid in (a) and (f). If you go
through one of them and then the other, must you end up with the same
thing you started with?



