
1.9 - Varieties and Coproducts

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

We finally have enough tools to deal with the presence of identities! Recall
that an identity indicates what expressions in variables must be equal for all
substitutions. Expressions are, though, elements of F (Ω, X), which leads to the
following definition.

DEFINITION
A pair (w1, w2) ∈ F (Ω, X)2 is called an identity for Ω. An Ω-algebra A is

said to satisfy the identity (w1, w2) if f(w1) = f(w2) for every homomorphism
f : F (Ω, X)→ A.

For the rest of this chapter, we letX0 be the countably infinite set {x0, x1, x2, . . . }.
For example, suppose Ω has a single binary operation [written multiplicatively]
and A is an Ω-algebra. Then ((x0x1)x2, x0(x1x2)) is an identity. What does
it mean to say that A satisfies that identity? Well, suppose that for every
homomorphism f : F (Ω, X0) → A, f((x0x1)x2) = f(x0(x1x2)). This says
(f(x0)f(x1))f(x2) = f(x0)(f(x1)f(x2)) for every homomorphism f : F (Ω, X0)→
A. Since there exists a homomorphism F (Ω, X0)→ A with any given action on
the x0, x1, . . . , it turns out that (ab)c = a(bc) for all a, b, c ∈ A. The argument
can be traced both ways. Hence, A satisfies ((x0x1)x2, x0(x1x2)) if and only if
(ab)c = a(bc) for all a, b, c ∈ A. It all makes sense! An identity (w1, w2) can
sometimes be referred to as w1 = w2.

This rigorates the definition of a monoid: suppose Ω(0) = {1} and Ω(2) =
{p}. Then an Ω-algebra A is a monoid if and only if it satisfies the identities:

1. ((p(px0x1)x2), (px0(px1x2))) [associativity];
2. ((p(1)x0), x0) [left identity];
3. ((px0(1)), x0) [right identity].
These can be rewritten as follows: (x0x1)x2 = x0(x1x2), 1x0 = x0, x01 = x0.
To generalize the idea, suppose S ⊆ F (Ω, X0)2 is a set of identities. Let

V(S) be the class of all Ω-algebras satisfying every identity in S. Then V(S)
is called a variety. For example, the groups form a variety, as do the rings
[Exercises 1 and 2]. V(S) has some interesting closure properties, as we now
see. If X ′ ⊆ X, recall how F (Ω, X ′) is a subalgebra of F (Ω, X) from Exercise 4
of Section 8.

LEMMA 1.20 (1) For each w ∈ F (Ω, X), there exists a finite subset X ′ of X
such that w ∈ F (Ω, X ′).

(2) If w1, w2 ∈ F (Ω, X), there exists a finite subset X ′ of X such that
F (Ω, X ′) contains both w1 and w2.

Be careful: (1) does not imply that there’s a finite subset X ′ ⊆ X such that
F (Ω, X ′) = F (Ω, X)! It says that each w ∈ F (Ω, X) is in F (Ω, X ′) for some
finite subset X ′ of X. The finite subsets, no matter how chosen, are widely
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different depending on which w ∈ F (Ω, X) we deal with. You can picture the
theorem in one sentence: expressions and identities are finite. They only use
finitely many symbols, due to the notion of length.

Proof of Lemma 1.20. (1) Let A be the set of w ∈ F (Ω, X) with the property
stated in (1). We claim that A = F (Ω, X). To show this, we show that A is a
subalgebra of F (Ω, X) containing i(X). Each i(x) ∈ i(X) is in F (Ω, {x}) and
{x} is a finite subset of X, so every element of i(X) satisfies the property and
i(X) ⊆ A. If ω ∈ Ω(0), then (ω) ∈ F (Ω, ∅) [because it’s in every subalgebra
of F (Ω, X)] and ∅ is finite, so (ω) ∈ A. Now suppose n ≥ 1, ω ∈ Ω(n) and
a1, a2, . . . an ∈ A. Then there are finite subsets X1, X2, . . . Xn ⊆ X such that
ai ∈ F (Ω, Xi) for every i. The union U = X1∪X2∪· · ·∪Xn is a finite subset of
X and ai ∈ F (Ω, U) for every i. Hence, (ωa1a2 . . . an) ∈ F (Ω, U), which means
(ωa1a2 . . . an) satisfies the property and is in A. Hence, A is a subalgebra of
F (Ω, X) containing i(X), and is therefore F (Ω, X) since the algebra is generated
by i(X).

(2) If w1, w2 ∈ F (Ω, X), there exist finite subsets X1, X2 ⊆ X with wi ∈
F (Ω, Xi) for i = 1, 2 by part (1). X1 ∪X2 is a finite subset of X and F (Ω, X1 ∪
X2) contains both w1 and w2. �

THEOREM 1.21 (1) V(S) contains the terminal algebra T (Ω).
(2) If A ∈ V(S), every subalgebra of A is in V(S).
(3) If A ∈ V(S), every homomorphic image of A is in V(S).
(4) If {Aα} is a batch of [not necessarily distinct] algebras in V(S), the prod-

uct ΠAα ∈ V(S).

Note that if A ∼= B, the isomorphism A → B is surjective, and hence, B is a
homomorphic image of A. So part (3) implies that every isomorphic copy of
an algebra in V(S) is in V(S) — and you don’t need to worry over relabeling
elements of an algebra.

Also, the fields do not form a variety. For one thing, property (4) fails: the
product of fields is not a field.

Proof of Theorem 1.21. (1) There is only one homomorphism f : F (Ω, X0) →
T (Ω) and it maps every expression to the unique element of T (Ω). Hence,
f(w1) = f(w2) for every (w1, w2) ∈ S, and T (Ω) ∈ V(S).

(2) Suppose B is a subalgebra of A, f : F (Ω, X0) → B is a homomor-
phism and (w1, w2) ∈ S. If ι : B ↪→ A is the canonical monomorphism,
ιf : F (Ω, X0)→ A is a homomorphism, hence ιf(w1) = ιf(w2) since A ∈ V(S).
Therefore, f(w1) = f(w2) since ι is injective. Consequently, B ∈ V(S).

(3) Let η : A → B be the surjective homomorphism which is hypothesized
to exist, f : F (Ω, X0) → B a homomorphism and (w1, w2) ∈ S. By Lemma
1.20(2), there exists a finite set X ′ ⊆ X0 such that F (Ω, X ′) contains w1 and w2.
For each xk ∈ X ′, choose ak ∈ A so that η(ak) = f(xk) [since η is surjective,
this is possible; and no Axiom of Choice is needed since X ′ is finite]. Pick
one random element of A [what does this proof become if A = ∅?] to be
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ak whenever xk ∈ X0 − X ′. The map xk → ak from X0 to A extends to
a homomorphism g : F (Ω, X) → A. We know that f(xk) = ηg(xk) for all
xk ∈ i(X ′), because ηg(xk) = η(ak) = f(xk). Hence f(w) = ηg(w) for all
w ∈ F (Ω, X ′) by Exercise 10(a) of Section 3. In particular, f(w1) = ηg(w1) and
f(w2) = ηg(w2). But g(w1) = g(w2), since A ∈ V(S), therefore, applying η to
both sides, f(w1) = f(w2). Therefore, B satisfies all identities in S and hence
is in V(S).

(4) Suppose f : F (Ω, X0)→ ΠAα is a homomorphism and (w1, w2) ∈ S. For
each α, recall the projection pα : ΠAα → Aα and consider pαf : F (Ω, X0)→ Aα.
Since Aα ∈ V(S), pαf(w1) = pαf(w2). Hence, f(w1)α = f(w2)α for all indices
α, so that f(w1) = f(w2). It follows that ΠAα ∈ V(S). �

Do you realize what we’ve done? We’ve just given a general proof that applies
to monoids, groups, rings, lattices, Boolean algebras, R-modules for a fixed ring
R, and so much more! Don’t get overpumped; next chapter will be even better!

You probably asked whether free algebras exist in V(S). They certainly do,
and we take the following approach to find them. If X is a set, define Φ(X,S)
to be the congruence relation on F (Ω, X) generated by the set

{(ϕ(w1), ϕ(w2)) | (w1, w2) ∈ S, ϕ a homomorphism F (Ω, X0)→ F (Ω, X)}

Note that we took all images of the identities. For example, the distributive
law a(b+ c) = ab+ ac in a ring, after substituting into b the expression x+ yz,
yields a((x + yz) + c) = a(x + yz) + ac, and that must hold in a ring. By
closing the relation into a congruence, we also regarded complicated results like
1x+ (ab)c = x+ a(bc).

Now put FS(Ω, X) = F (Ω, X)/Φ(X,S). We show:

THEOREM 1.22 The Ω-algebra FS(Ω, X) along with the map j : X →
FS(Ω, X) sending x→ x is a free algebra for V(S) given by X.

Proof of Theorem 1.22. First we show that FS(Ω, X) ∈ V(S). Suppose f :
F (Ω, X0) → FS(Ω, X) is a homomorphism and (w1, w2) ∈ S. X has a finite
subset X ′ such that w1, w2 ∈ F (Ω, X ′) by Lemma 1.20(2). For each xk ∈ X ′,
choose ak ∈ F (Ω, X) so that ak = f(xk). Pick one random element of F (Ω, X)
to be ak for each xk ∈ X0−X ′. The map xk → ak from X0 to F (Ω, X) extends
to a homomorphism g : F (Ω, X0) → F (Ω, X). Notice that if π : F (Ω, X) →
FS(Ω, X) is the canonical epimorphism, f(xk) = πg(xk) for xk ∈ X ′, and hence,
f(w1) = πg(w1) and f(w2) = πg(w2) by Exercise 10(a) of Section 3. However,
(g(w1), g(w2)) ∈ Φ(X,S) by definition, whence πg(w1) = πg(w2), since Φ(X,S)
is the kernel of π. Furthermore, f(w1) = f(w2), so that FS(Ω, X) ∈ V(S).

Now let A ∈ V(S) and f : X → A a set map. This yields an Ω-algebra
homomorphism f1 : F (Ω, X)→ A such that f1j = f . We claim that Φ(X,S) ⊆
ker f1: to show this, we need only show that (ϕ(w1), ϕ(w2)) ∈ ker f1 whenever
(w1, w2) ∈ S and ϕ : F (Ω, X0)→ F (Ω, X) is a homomorphism. This is because
Φ(X,S) is generated by the pairs of that form, hence any congruence relation
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containing them — in particular, ker f1 — contains Φ(X,S). The claim follows
from f1ϕ being a homomorphism F (Ω, X0) → A; hence f1ϕ(w1) = f1ϕ(w2)
since (w1, w2) ∈ S and A ∈ V(S). Thus (ϕ(w1), ϕ(w2)) is in the kernel of f1.
Therefore, Φ(X,S) ⊆ ker f1.

By Theorem 1.10, there is a homomorphism f1 : FS(Ω, X) → A such that
f1π = f1 with π the canonical epimorphism. Also, notice that j = πi. Hence
f1j = f1πi = f1i = f .

Now suppose f
′
1 : FS(Ω, X)→ A is also a homomorphism satisfying f

′
1j = f .

Put f ′1 = f
′
1π. Then f ′1i = f

′
1πi = f

′
1j = f . But f1 is the unique homomor-

phism F (Ω, X) → A such that f1j = f , so we must have f1 = f ′1. Hence

f1π = f
′
1π. Since π is surjective, f1 = f

′
1 follows, and f

′
1 is unique. �

EXAMPLE
The free group given by X0 consists of strings made up of elements of X0 and

their formal inverses. For example, x1x
−1
3 x0x2x

−1
0 is in the free group; however,

x2x
−1
2 simplifies to e.

We have shown that if {Aα} is a family of V(S) algebras, then A = ΠAα ∈ V(S).
If pα : A → Aα is defined by pα(a) = aα, recall that the following holds [see
Section 3]:

Whenever fα : B → Aα is a homomorphism for each α, there is a
unique homomorphism f : B → ΠAα such that fα = pαf for all α.

The coproduct comes from reversing the arrows. It can be seen to combine
algebras together, and can always be found due to the existence of free algebras.

DEFINITION
If {Aα} is a batch of V(S) algebras, a coproduct [or sum] of the Aα’s is

defined to be an algebra A ∈ V(S) along with homomorphisms iα : Aα → A
such that whenever B ∈ V(S) and fα : Aα → B for each α, there is a unique
homomorphism f : A → B such that fiα = fα for all α. The iα are called
injection maps.

EXAMPLES
1. Coproducts in the variety of sets are disjoint unions, because any two

maps A→ C,B → C combine to a unique map A ]B → C.
2. If the {Aα} are R-modules, then their coproduct [normally called their

direct sum] is the set ΣAα of a ∈ ΠAα such that aα 6= 0 for finitely many α’s.
The injection map iα : Aα → ΣAα is defined by iα(a)α = a, iα(a)β = 0 when
β 6= α.

3. Exercise 14 shows that a coproduct of groups is a free product. If the Gα
are groups, every nonidentity element of

∐
Gα can be written uniquely in the

form x1x2 . . . xn where each xi ∈ Gα for some α, xi 6= e and xi, xi+1 are never
in the same operand group.
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LEMMA 1.23 Every V(S) algebra is a homomorphic image of a free V(S)
algebra.

Proof of Lemma 1.23. If A is a V(S) algebra, the identity map A → A [where
the domain is regarded as a set] extends to a homomorphism f : FS(Ω, A)→ A
satisfying f(x) = x for all x ∈ A. Each a ∈ A is equal to f(a), so f is surjective.
Hence, A is a homomorphic image of FS(Ω, A). �

THEOREM 1.24 Any V(S) algebras have a coproduct in V(S), which is unique
up to isomorphism.

The proof yields a legitimate recipe for finding coproducts in V(S). However,
this recipe is deferred to Section 2.4, because it [sadly] makes this section too
long.

Proof of Theorem 1.24. We claim that V(S) algebras which possess coproducts
include all free algebras and are closed under homomorphic images. Then since
every algebra is a homomorphic image of a free algebra by Lemma 1.23, it will
follow that all algebras have coproducts.

First suppose A is a coproduct of the Aα given by homomorphisms iα :
Aα → A and for each α, ηα : Aα → Aα is a surjective homomorphism. Now
let Θα = ker ηα, iαΘα = {(iα(a), iα(b)) | (a, b) ∈ Θα} and Θ the congruence
relation on A generated by

⋃
iαΘα. [This constitutes our first trick!] We claim

that A/Θ is a coproduct of the Aα.
Let π be the canonical epimorphism A → A/Θ and vα = πiα : Aα →

A/Θ. We claim that Θα ⊆ ker vα. To show this, suppose (a, b) ∈ Θα. Then
(iα(a), iα(b)) ∈ iαΘα ⊆ Θ. Hence, πiα(a) = πiα(b) by definition of π, and
vα(a) = vα(b), which means that (a, b) ∈ ker vα. Therefore, there is a unique
homomorphism vα : Aα → A/Θ such that vα = vαηα.

So we have a homomorphism from each Aα to A/Θ. Now suppose B ∈ V(S)
and fα : Aα → B are homomorphisms. Let fα = fαηα : Aα → B. Then since
A is a coproduct of the Aα’s, there is a unique homomorphism f : A→ B such
that fα = fiα for all α.

The statements vα = πiα, vα = vαηα, fα = fαηα, fα = fiα are organized in
the following commutative diagram.

B

A
π
>

f >

A/Θ

Aα

iα

∧

ηα
>

fα

>

vα >

Aα

vα

∧ fα

>

We claim that Θ ⊆ ker f : since Θ is generated by
⋃
iαΘα, we need only show

that iαΘα ⊆ f for every α to prove our claim. Whenever (a′, b′) ∈ iαΘα,
there exists (a, b) ∈ Θα such that a′ = iα(a) and b′ = iα(b). Furthermore,
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ηα(a) = ηα(b) so that f(a′) = fiα(a) = fα(a) = fαηα(a) = fαηα(b) = fα(b) =
fiα(b) = f(b′), and (a′, b′) ∈ ker f . Therefore, Θ ⊆ ker f .

Consequently, f injectifies to a homomorphism f : A/Θ → B such that
f = fπ, where π is the canonical epimorphism A → A/Θ. We also have
fvα = fα because fvαηα = fvα = fπiα = fiα = fα = fαηα, and ηα can be
cancelled off the right due to surjectivity.

To show that f is unique, suppose f
′

: A/Θ → B also satisfies f
′
vα = fα.

Then f ′ = f
′
π satisfies f ′iα = f

′
πiα = f

′
vα = f

′
vαηα = fαηα = fα. Since f is

the unique homomorphism A → B such that fiα = fα, we must have f = f ′.

Therefore, fπ = f
′
π, hence f = f

′
since π is surjective. Therefore, f is unique,

and A/Θ is a coproduct of the Aα’s.
Now we show that free V(S) algebras have a coproduct. Let Xα be sets and

Aα = FS(Ω, Xα). Now let X =
⊎
Xα and we show that A = FS(Ω, X) is a

coproduct of the Aα’s, with iα : Aα → A mapping each element of Xα to the
corresponding element of X.

Suppose B is an Ω-algebra and fα : Aα → B for each α. Define f : X → B
mapping each x ∈ Xα to fα(x). Then since A = FS(Ω, X), there is a unique
f : A → B such that f = f |X. fα = fiα for each α follows from fα|Xα =
fiα|Xα, and f |X is uniquely determined by this property, making f unique.
This concludes the proof of the coproduct’s existence.

The uniqueness of the coproduct is similar to Theorem 1.19 and is left to
the reader. �

EXERCISES

1. If Ω(0) = {e}, Ω(1) = {i}, Ω(2) = {p} and

S = {((p(px0x1)x2), (px0(px1x2))), ((p(e)x0), x0), ((p(ix0)x0), (e))}

then V(S) is the class of groups. [Hint : Exercise 4(a) of Section 1.]

2. Suppose Ω(0) = {0, 1}, Ω(1) = {n}, Ω(2) = {s, p} and S consists of the
following pairs:

((s(sx0x1)x2), (sx0(sx1x2))) ((p(px0x1)x2), (px0(px1x2)))
((sx0x1), (sx1x0)) ((px0(sx1x2)), (s(px0x1)(px0x2)))

((s(0)x0), x0) ((p(sx0x1)x2), (s(px0x2)(px1x2)))
((sx0(nx0)), (0)) ((p(1)x0), x0)

((px0(1)), x0)

(a) Rewrite the operators and identities so they are easier to read.

(b) Convince yourself that V(S) is the class of rings.

3. Express the class of rings with involution as a variety.

4. There are no axioms for the pointed set — it’s just a set with a nullary
operator. Does this prevent the pointed sets from being a variety?
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5. The free monoid given by a set X consists of the strings made up of
elements of X, including the empty string. For example, if X = X0, one
of the elements is x1x4x2x2x5x1.

6. (a) The commutative monoids form a variety.

(b) Describe the free commutative monoid given by a set.

7. Every element of the free ring given by a set X is a formal sum of strings
made up of elements of X and their formal negatives. For example, x1x3−
x2+x4x6x4 is in the free ring given by X0; and (x1+x4)(x2x3+x2) can be
changed to x1x2x3 +x4x2x3 +x1x2 +x4x2 so it doesn’t have parentheses.

8. If M is a fixed monoid, the free M -action given by a set X is M×X given
by m(a, x) = (ma, x) for m, a ∈ M,x ∈ X, and i : X → M ×X sending
x→ (1, x).

9. Let X ′ = {x1, x2, . . . xn} and v1, v2, . . . vk, w1, w2, . . . wk be expressions in
X ′. Then

A = 〈x1, x2, . . . xn | v1 = w1, v2 = w2, . . . , vk = wk〉

is defined to be the result of taking the free V(S) algebra given by X ′,
and then dividing out the congruence relation generated by the (vj , wj)’s.
[This is usually done in the variety of groups.] If B is a V(S) algebra,
show that a map f : X ′ → B extends to a homomorphism A→ B if and
only if substituting each xi for f(xi) in any statement vj = wj yields a
true statement in B.

10. Let IS(Ω) = FS(Ω, ∅). IS(Ω) is called the initial algebra for the variety
V(S).

(a) IS(Ω) is nonempty if and only if Ω contains a nullary operator.

(b) If V(S) is the class of rings, IS(Ω) ∼= Z. [Hint : Exercise 7.]

(c) For each A ∈ V(S), there is exactly one homomorphism IS(Ω) → A,
and its image is the smallest subalgebra of A.

(d) A V(S) algebra is a homomorphic image of IS(Ω) if and only if it has
no subalgebra except itself.

11. Assume A
∐
B denotes a coproduct of A and B in V(S).

(a) If A ∼= C and B ∼= D, then A
∐
C ∼= B

∐
D

(b) (A
∐
B)

∐
C ∼= A

∐
(B

∐
C)

(c) A
∐
B ∼= B

∐
A

(d) IS(Ω)
∐
A ∼= A

12. If S ⊆ T ⊆ F (Ω, X0), every Ω-algebra in V(T ) is in V(S). [V(T ) is said
to be a subvariety of V(S) in this case.]
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13. Suppose V(S) is a variety in which IS(Ω) ∼= T (Ω). Then every V(S)
algebra has a unique one-element subalgebra. Furthermore, for all A,B ∈
V(S), there exists a homomorphism A → B. [If the initial algebra is
isomorphic to the terminal algebra, it can be called a zero algebra.]

14. A coproduct
∐
Aα of V(S) algebras is said to be a free product if every

iα : Aα →
∐
Aα is injective. If a homomorphism Aα → Aβ exists for all

α, β, then
∐
Aα is a free product. [Hint : For each α, let fβ : Aβ → Aα be

any homomorphisms, subject to the condition that fα = 1Aα
. There is a

homomorphism f :
∐
Aα → Aα such that fiβ = fβ for all β. Use this to

show that iα is injective.]

15. (a) If V(S) is a variety in which all operators are nullary, when is a V(S)
algebra free?

(b) If V(S) is a variety in which all operators are unary, show that V(S)
is the variety of M -actions for some fixed monoid M . Conclude that
coproducts in V(S) are disjoint unions, and subalgebras of a V(S) algebra
include the empty set and are closed under unions.

8


