
1.1 - Definition and Examples of Ω-algebras

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Operations rise quite often in mathematics. Ever tend to notice how monoids,
groups, rings, modules, lattices, etc. have similar abilities? This is because each
is a set equipped with certain operations. Any such set can be treated in a
generic way, which leads to the following.

Universal algebra studies morphisms, products and a lot of other topics on
a generalized operation equipment on a set. To see the idea, we must stick to
one batch of operation equipment which we call the signature.

Consider the monoid M , for instance. M is a set with an associative binary
operation ∗ which has a unit 1. The binary operation ∗ should certainly belong
to the signature. Now when we give a set M a binary operation ∗, do we know
whether we result in a monoid? Yes, either the operation is associative or it is
not, and there is at most one element 1 satisfying 1 ∗ x = x = x ∗ 1 for every
x ∈ M [see Exercise 1]. So it appears that ∗ is the only operation to belong to
the signature. That is not quite true, as we are about to see.

A homomorphism of monoids f : M → N satisfies f(1) = 1 and f(xy) =
f(x)f(y) for all x, y ∈ M . If only the binary operation mattered, a homomor-
phism would only need to satisfy f(xy) = f(x)f(y). This is not sufficient, as
there exist maps of monoids that preserve multiplication but do not map 1 to
1. Consider M = N = (Z, ·), for instance. Then if f : M → N is defined by
f(a) = 0 for all a, then f(xy) = f(x)f(y) [since 0 · 0 = 0] but f(1) 6= 1.

So both the binary operation ∗ and the unit 1 are needed to keep things
in hand. Afterwards, we need only regard the identities (xy)z = x(yz) and
1x = x = x1, which don’t affect homomorphisms at all.

Note that if G and H are groups and f : G→ H satisfies f(xy) = f(x)f(y),
then f is a group homomorphism [see Exercise 2]. So in terms of group homo-
morphisms, only the binary operation needs to be regarded. But this is not so
for subgroups. The subset N of the additive group Z is not a subgroup because
1 ∈ N, but its inverse −1 is not in N. It is closed under addition, nevertheless.

Therefore the group’s signature needs to regard the binary operation, the
inverse and the identity. It is then straightforward what the requirements of a
subgroup would be.

To generalize the idea, it is important to know that a set like that has two
things: (1) existential operators; (2) equational identities [axioms of the form
(. . . ) = (. . . )]. Morphisms and subsets that have the equipment need to regard
(1), but not (2). (1) comes in the form of n-ary operators, which are feed n
elements of the set and return an element of the set. As of now, we will stick
to only (1).

Let A be a set, and n a nonnegative integer. If ω is a map An → A sending
(a1, a2, . . . an) to (ωa1a2 . . . an), then ω is an n-ary operator on A. An example
with n = 2 is the binary operation on a monoid. Note that if n = 0, ω is just a
map from the 1-element set {()} to A, which can be thought of as an element
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(ωA) of A. An example of this is the unit 1 of a monoid, which must be regarded
by the signature.

There may be many operators in the signature, but each has a certain de-
gree. This motivates the following definitions.

DEFINITION
A signature is a mathematical object Ω such that for each nonnegative

integer n, Ω(n) is a set, whose elements are called n-ary operators. Ω can be
thought of as ]Ω(n).

If Ω is a signature, an Ω-algebra is a set A such that for each n ≥ 0,
each ω ∈ Ω(n) is associated with a map An → A, where the output under
(a1, a2, . . . an) is denoted (ωa1a2 . . . an). The set is called the carrier of the
Ω-algebra.

EXAMPLES
A vast majority of the following examples have equational identities. How-

ever, it is best that we not generalize the concept of identities until Section
9.

1. Let Ω = {p, 1} where p is binary and 1 is nullary. Then a monoid
is an Ω-algebra satisfying the identities (px(pyz)) = (p(pxy)z); (p(1)x) = x;
(px(1)) = x.

2. Let Ω = {p, 1, i} where p is binary, 1 is nullary and i is unary. Then a
group is an Ω-algebra satisfying the identities (px(pyz)) = (p(pxy)z); (p(1)x) =
x; (px(1)) = x; (px(ix)) = (1); (p(ix)x) = (1). Note that the last identity is
quite redundant; it follows from the other identities.

3. Add the identity (pab) = (pba) to the previous example to get an abelian
group. They form a signature of their own.

4. A ring is an Ω-algebra with even more identities, where Ω(2) = {s, p}
(s sum, p product), Ω(1) = {n} (additive inverse) and Ω(0) = {0, 1}. As
an exercise, write out all the necessary identities; one of them is (px(syz)) =
(s(pxy)(pxz)).

5. A rng is an Ω-algebra where Ω(2) = {s, p}, Ω(1) = {n} and Ω(0) = {0},
and all the ring’s identities that don’t involve 1 are satisfied. A rng can be
thought of as a “ring without unit.”

6. A ring with involution is a ring R with an extra unary operator a→ a∗

satisfying (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, 1∗ = 1 and (a∗)∗ = a. It is easily
seen that there is a signature for rings with involution.

7. If Ω(n) = ∅ for all n, then an Ω-algebra is simply a set. You can think
of this as a set equipped with no operations at all. Ω is called the empty
signature.

8. A pointed set is an Ω-algebra where Ω consists of a single nullary
operator for the base point. It can be thought of as a pair (X,x0), where
x0 ∈ X.

9. A set with involution is an Ω-algebra A where Ω consists of a single
unary operator ∗ and (a∗)∗ = a for all a ∈ A. The operator is called an
involution.
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10. Let R be a fixed ring. Define Ω(2) = {s}, Ω(0) = {0} and Ω(1) = R.
Then an Ω-algebra satisfying the correct identities [such as (r(sx)) = ((rs)x)
when r, s ∈ R] is a left R-module. Note that there is no restriction on the
cardinality of operators or identities.

Warning : There is no signature for all modules. The modules over a given
ring can be put into a signature. It is pertinent to know that there’s no such
thing as a module homomorphism from M to N if they are modules over entirely
different rings.

11. In a similar way right R-modules and R-S-bimodules can be defined.
12. A Lie algebra over a commutative ring R is an R-module L with

a binary operator a, b → [a : b] satisfying [x : (y + z)] = [x : y] + [x : z],
[(x + y) : z] = [x : z] + [y : z], [x : cy] = c[x : y] = [cx : y], [x : x] = 0 and
[x : [y : z]] + [y : [z : x]] + [z : [x : y]] = 0. Once again, this is an Ω-algebra with
identities, and they will be dealt with in Sections 9 and up.

13. An associative algebra over a commutative ring R is a ring A which
is an R-module with the same addition, such that (cx)y = c(xy) = x(cy) for all
c ∈ R, x, y ∈ A. For example, the matrix ring Mn(R) is an associative algebra
over R.

14. A magma is a set equipped with a binary operation. It does not require
any identities. A semigroup is a magma whose operation is associative; i.e.
satisfies the identity (pa(pbc)) = (p(pab)c). Thus a monoid is a semigroup with
an identity element.

15. A lattice is an Ω-algebra where Ω(2) = {∧,∨} satisfying (a ∧ b) ∧ c =
a∧ (b∧ c), (a∨ b)∨ c = a∨ (b∨ c), a∧ b = b∧ a, a∨ b = b∨ a, a∧ a = a = a∨ a,
a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

16. Let M be a monoid. An M -action is an Ω-algebra X with Ω(1) = M
[that is, a set X along with a map M × X → X] satisfying 1x = x and
(mn)x = m(nx) for m,n ∈ M , x ∈ X. Thus a set with involution is an
M -action where M is the group Z2.

You should be convinced that there are loads of different kinds of Ω-algebras.
This is why we should be able to give general proofs that work for all of them.

New Signatures from Old Ones

If Ω1 and Ω2 are signatures, Ω2 is said to be an extension of Ω1 provided that
Ω1(n) ⊆ Ω2(n) for all n. In this case, every Ω2-algebra is an Ω1-algebra.

EXAMPLES
Note that the definition of an extension can be rephrased when identities

are involved. But like we said, we are not dealing with identities quite yet.
1. The group’s signature is an extension of the monoid’s, which is an exten-

sion of the semigroup’s, which is an extension of the magma’s.
2. The ring’s signature is an extension of the rng’s, where the identity is

added. The signature for the ring with involution is an extension of the ring’s
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signature. The rng’s signature is an extension of the signature for an abelian
group (because a rng is an abelian group under addition).

3. Every signature is an extension of the empty signature for sets, because
∅ ⊆ Ω(n) whenever Ω is a signature. This works as promised; an Ω-algebra is a
set.

4. If F is a field, then associative algebras over F are an extension of rings,
and also an extension of vector spaces over F . Lie algebras over F are an
extension of vector spaces over F .

5. Note that a monoid is actually an extension of a pointed set, because a
monoid M can have the weaker treatment as a pointed set with base point 1.

6. Abelian groups are an extension of groups, and commutative rings are an
extension of rings.

New Ω-algebras from Old Ones

It is high time we stop talking about all the different signatures, and from this
point, focus on a single signature Ω. Can two Ω-algebras A and B be combined,
in a generic way that doesn’t depend on Ω? The answer is yes: we define A×B
to be the usual Cartesian product of sets, and for each n ∈ Ω(n), we define

(ω(a1, b1)(a2, b2) . . . (an, bn)) = ((ωa1a2 . . . an), (ωb1b2 . . . bn))

For instance, if A and B are sets with involution, A×B is defined by (a, b)∗ =
(a∗, b∗).

Now suppose A is an Ω-algebra and S is a set. [S need not be an Ω-algebra
at all.] One can define an Ω-algebra structure on the set AS of functions S → A
thus: for ω ∈ Ω(n) and f1, f2, . . . fn ∈ AS , (ωf1f2 . . . fn) : S → A is defined by
(ωf1f2 . . . fn)(s) = (ωf1(s)f2(s) . . . fn(s)).

This is a vague introduction to Ω-algebras. It should be easy to remember
in the future sections.

EXERCISES

1. If M is a set equipped with a binary operation ∗, prove that there is at
most one 1 ∈M such that 1 ∗ x = x = x ∗ 1 for every x ∈M .

2. Let G and H be groups. If f : G → H such that f(xy) = f(x)f(y) for
all x, y ∈ G, prove that f is a homomorphism. [You need to show that
f(e) = e and f(x−1) = f(x)−1 for all x ∈ G.]

3. What is wrong with the following argument that subgroups of a group need
not regard the identity element? “If H is a subgroup of G and a ∈ H,
then a−1 ∈ H since the inverse of an element of H is also in H. Further-
more, aa−1 = e ∈ H since H is closed under multiplication. Therefore,
every subset of G closed under multiplication and inverses automatically
contains the identity element.”
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4. Let G be a semigroup.

(a) If there exists e ∈ G such that ea = a for all a and for each a ∈ G,
there exists d ∈ G such that da = e, prove that G is a group.

(b) If there exists e ∈ G such that ea = a for all a and for each a ∈ G,
there exists d ∈ G such that ad = e, show by example that G may not be
a group.

(c) If G is finite and nonempty, and whenever ab = ac or ba = ca then
b = c, prove that G is group.

(d) Show by example that (c) may be false if G is infinite.

(e) If G is nonempty and for all a, b ∈ G, there exist x, y ∈ G such that
ax = b = ya, prove that G is a group.

5. For a Boolean algebra, what are all the operations needed in the signature?

6. Show that an associative algebra A over a commutative ring R is a Lie
algebra given by [a : b] = ab− ba for a, b ∈ A.

7. If L is a Lie algebra over R, prove that [a : b] = −[b : a] for a, b ∈ L. [Hint :
Expand [(a+ b) : (a+ b)].]

8. (a) Show that every signature Ω is an extension of Ω.

(b) Show that if Ω3 is an extension of Ω2 and Ω2 is an extension of Ω1,
then Ω3 is an extension of Ω1.

9. Let T (Ω) be the 1-element set {ε}, where for each ω ∈ Ω(n), (ωεε . . . ε) = ε.
Convince yourself that T (Ω) is an Ω-algebra. It is called the terminal or
trivial Ω-algebra.
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